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The response of an unbounded and isothermal atmosphere to a point , 
/ 

impulse of force'is studied. Fronts of disturbances propagate w i t h  two 

different speeds corresponding t o  acoustic waves and to gravity waves. 

The distributions of kinetic energy density in the two wakes behind the . 
two fronts are calculated. 

front, the radiatgon density is very intense above and below the source, 

i f  the atmosphere i s  sufficiently stable to  convection. Thh resu l t  

may be of interest in connectioau$th the formation of spicule structures ' 

i n  the rolar upper chromosphere. 
* 

A striking resul t  is that  behind the acoustic. * '  
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In 4 previous paper 

~ - 

, 3 

1. ZKPROIJOCTI014 
. 

(Kate 1965; hereafter this paper will be refatred. 

to aa I) we studied the response of an atmosphere to time-hannonic point 

disturbances. % I s  atmosphexe was assumed to be isothermal and unbounded 

and subjected to an M i f o r m  field of gravity. 

the response of tbe same kind of atmosphere to impulsive point disturbances, . 

and esuphae$ze some interesting effects of the degree of stability of the 

In the present paper we study. 

I 

atmosphere upon ;he response. 

Tbe impulsive disturbance treated bere will be assumed isotropic for 
' . 

First, in paper I, we have already learned someehing-f- the-, . .  
-- two reasons. 

directional response of the isothermal atmosphere by treating linear, 

osctllating forces ali-d in different directions. 

disturbances we may expect that the differences in the direction will 

produce similar differences in the response of the atmosphere. 

. 
In the caee of impulsive 

. 

Second, 

for an isotropic point impulse, the response of the atmosphere is spherically 

spuetric if the atmosphere is' convectively neutral (y = l), as we shall see. 

Thus, we can concentrate our attention upon effects of the degree of 
Q 

stability * of the atmosphere by studying deviation from spherical s$metxy.  : .  .t: 
in the response. 

impulses may be treated and show how they may be combined to yield the 

results obtained with an isotropic source. 

In the Appendix, however, we indicate how directed 

/ 
/ 

Now, Whitham (1961) showed that in the initial value problems,of 

propagation of waves, the amplitude of distances can be calculated easily 
2' 3 . I  

. * and directly with the help of some properties of group velocity. We apply 
. .  

: *  .. 1 

t 0 .  

I 

. .  
. * .  
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: I  I .. 4 a '  

, . *  
a ' whitham's metho4 t o  study of the response'of an atmosphere t o  an isotropic  . ., 

:. 1 . .  
ihrpalse, without solving an inhonmgeneaus wave equation. An advantage o f  

. .  

. ._ , *  

..I 

. I  
*' i 

, ,  
such,a direct  argument,ie that it may bel t h n  wer t o  a s l igh t ly  pop- . * * . *  ~ 

. .  isothermal atmosphere. 

I . .  
. * In order t o  apply Whitham's approach, it is necessary t o  obtain an 

1 .expression for  the group velocity. I f  the dispersion relat ion is given by ; 

. * .  1 

- G& W) = 0,  the group velocity, U, can be writ ten as - 
* .  

i because 8G&+ @ G h )  8Wbk rrr = 0. In an isothermal atmosphere stratifid. 

under a*con8tant gravity, g 
. .  . -  . -  

(0, or -g), the dispersion relation, G (k, w ) ' =  0 ,  
..rr * - .  

is given by (e.g., see equation (5) in I) I 
I .  

. '  I 
. .  

(2) 
2 2 2  ,G(k ,  W)' ET - W4 + W2 (cS2 + Wl) 2 - c @2 1 = . O  ' 

, .  

. .  , 

. I  ., I ' where 7 ,  g and c are the r a t i o  of the specific heats, the  magnitude of, * ; 
1 ,  

I !  
1 .  

* I  
. I  'gravity,  and the adiabatic sound velocity, respectively. 

,- ! 
t' 1 . - .  

, . ,  If the angle between the direction of the group velocity and the * ,. 
( ,  

. - I  . ./ I 
_.-.- 

posit ive z-axis is 8 and the longitude mesured from x-axis is e 9, the '  
. ' 

., relation, U'/ / -vG,  shown in equation (1) c+ bewri t ten  as cu 



0 
I 

4 k I- - Bcpreseingr fdr example, k and f by k, w i t h  the use of equation @), and 0 .  

Y 
insert& them into equation (2), we have an expression f o r  kx wri t tem by * 

e .  w, 0 and e. Quite similarly we can have expressione for k and kz. These 
. _  

.\ Y 

I 

. .  

\ .  
Inserting' the values f o r  kx, k and ki given in equations ( 5 )  and (6) . Y 

i n to  a camgoeent of equation (l), the magnitude of the  group velocity can 
. #  

; be expressed aa (see also Moore and Spiegel 1964) 
. * e  * .  

i 2 2  2 2  2 2  2 (a -w2)1a -w,)(w -0 cos e) 

" C(0 -02) + ~2(IJ1'02)sh e1 
*(w9e)=c 2 2 2 2 2  2 2 2 2 2 2 - ( 7 )  

. .  
.' 

Of course, the group velocity has meaning only in the frequency ranges of ' 

a c p s t i c  waves (w > wl) and of k a v i t y  waves (w < w2 cos e). Here we 

should.mention that in waves radiating energy in the c r r t i c a l  direction, 

' 

-s . .  
2 2  2 2 2  

' 1  

eC(cos ' 2  ec = w2/u 2 2  ), of gravity waves the group velocity ZS zero (see 
8 

equation (7)) and the  wavelength is in f in i te  (see equations (5) and ( 6 ) ) .  
' .  

. .  

111. FREQUENCX DI-ON IN WAKES 
I 

We assume a point impulse of force at the origih, - r = 0 ,  and at the 
8 .  

time, t - 0. As the medium iS dispersive, there remain wakes a f t e r  the 

1) We -&der the plane wave exp(i&-i&.z) for  W > 0. If we consider the * 
plaxq wave exp(iw&$.~) for  1 > 0 the sighs of ki, k and kz in 

equations (5 )  and (6 )  should be changed. 
Y 



' -passage of front8 of dieturbances. A t  points in thb wake8 far f r o m  the 

fronts the disturbances are broken down in to  wave trains, the different 

wave number components o r  frequency components dis t r ibute  wer the physical' 

r-space, and each 5 (or 0) propagates with the group velocity (Whitham 1961; . 

, *  

" 

. cu 

see also Appedix 8 in Lighthill 's paper 1960). 

fronts of disturbances, 5 (or i) and 2 are related through the group 

That is, far from the 
' *  

. .  
* velocity% by * . #  

I +--. 

r = 2 (w, 6) t (8) a .  
N 

This relation enab1es.w t o  calculate the frequency distribution i n  wakes 

except f& the region near the 'fronts. We introduce a sphere of radius . 

rc = c t  ( this  sphere represents the front of acoustiq waves). Then, from . .  . 
, 

.. 
. .  . equatioh ( 8 ) ,  we have r/rc = U(w,e)/c or by solving th i s  for  w we obtain . :.: 

0 = w(r/rc;6p), which shows the frequency distribution in wakes. In . , 

generai, w is not a single valued hnc t iod  because there &e' two wave -. _I ,  

(the akaustic ani the gravity wave modes). The surfaces of constant valyes . 

of w i n  the:-space are drawn i n  Figures 1 and 2 (see also Figure 4 i n  

. .  

' 

' 
I , 

. .  
, 

' * e  I .  . 
'. Moore and Spiegel's paper (1964)) for the acoustic wave mode (0 2 W1) 

'and for the gravity wave mode (w w2), respectively. The three cyrves 

. $  

. . , * .  

. I  

' f o r  'each value of 0 i n  Figure 1 are for 7 = 1, 4 / 3  and 5 / 3  respec.tively. 

The l e f t  hand side i n  Figure 2 i s  for 7 = 4 / 3 ,  and the r ight  hand side i s  

fo r  7 ='5/3. 1 

' * ,  . --- . I  

* .  

, ? 

~ I .  

'8 I Figure 1 shows that  a front of acoustic wawes propagates spherically. . 
. *  . .  

from the source with the sound velocity (7 B T . A ) ~ / ~ .  After the passage o€ . 

the €rant there remains a wake. In the wake frequencies of disturbances 
I , 

.. 
tend rapidiy t o  the upper characteristic frequency of the atmosphere, wl;-* 

' . ..- . 
as shown i n  Figure 1. The resul t  that them is a wake behind the acoustic. , * .  



7 

* front, and the frequencies of disturbances in the wake tend t o  the upper 
' 

characterist ic frequency is qualitatively the same as in the one-dimaashnal 

case studied by Lamb (1908). 

disturbances from an impulsive force acting uniformly on an infinite 

horizontal plane.) 

formed by the envelope of disturbances propagating from the source as 

gravity waves,  and a f t e r  the passage of the front, wave motions at  a 

point i n  the wake  consist of two different frequencies as shown in Figrire 2. 

The gravity waves,  of'course, do not appear in Lamb's one-dimensional Case .  - 
Here we note tha t  Figures 1 and 2 can also be interpreted as polar 

CLana, studied the ver t ica l  prqpagation of 
* 

The other front (front of gravity waves) is the one , 

: . 

' , 

diagrams of magnitude of the group velocity for  acoustic waves and for  

gravity waves, respectively. 

of a point on a cun?e i n  Figures 1 and 2 denotes the magnitude of the group. 

That is, the radial  distance from the origin 

''- * -- , ..- -cz velocity in, that direction and for  that frequency, 
I 

. -  

IV. DISTBIBUTION OF KINETIC ENERGY 

DENS* IN WAKES 

a) Whitham's Method 

I 
l 
I 

i 

-' Whitham (1961)'has shown tha t  i n  the ini t ia l  value problem the amplitude 

v b i a t i o n  of disturbances can be calculated easi ly  and direct ly  with the 

help of some properties of group velocity. 

method to' calculations of the distribution of kinet ic  energy density i n  

wakes radiated-from an isotropic impulse. 

plane wave solutions, exp(iWt - i..:), where 0 a n d 5  are related by 

the dispersion relation, G ( k ,  w) - 0. 

pereion relat ion is given by equation (2). 

i 

* 

.. k We sha l l  apply here Whitham's 

Following Whitham, we consider 
. /  

In our present problem, the dis- 
, . .  

This dispersion relat ion showd 
I 

. I  

. .  



e .  

that  fo r  a given 5 there are always d p o s i t i v e  values of W2; one corresponds * 
L 

3 

' 

t o  the  acoustic wave mode and the other t o  the gravity wave mode. 

disturbances associated with the each wave mde, the magnitude of velocity, 

u, times- time-half of the  undisturbed density, po ', may be analyzed into 

For 

plane waves as 

where w is related t o  &by the dispersion relation, where F can be ex- , .  

. .  pressed i n  tenus of the i n i t i a l  conditions by * -  

. I  

. .  E 
. .  The r ight  hand s ide of equation ( 9 )  is complex and i ts  real par t  gives the * * '  . ' . .  -.". - 

magnitude of the disturbance. 1 

I f  'an &pulse is isotrop2c' the  form,of the i n i t i a l  condition is 

' * obvious, and w e  can apply Whitham's method easily. 

condition can be written as 

That is, the  i n i t i a l  , 

. .  

Thus, inserting e b a t i o n  (11) into equation (lo),  w e  have 
, . .  

s- ---. 
That is, P(kJ depends neither on the direction o f z n o r  on-its  magnitude. 

f 

. .  ' *  

' ,. t 



4 
The t o t a l  kinet ic  energy of dbturbances a t  the time, t, is given by 

.. . 

- .- 
ad, on substi tution of equation ( 9 ) ,  t h i s  can also be written as 

I 

v 

. .  
. (Zx)3 J +p(3s, p * w  % (34) 

-OD 

a /  As mentioned in the previous section, after the i n i t i a l  disturbances have 

I 

v 

. .  
. (Zx)3 J +p(3s, p * w  % (34) 

-OD 

a /  As mentioned in the previous section, after the i n i t i a l  disturbances have 
I 

been broken down in to  wave trains the different  values o f 5  are distributed 

over the physical r-space and each value of & propagates i n  the physical 

r-space with the group velocity. 

', between equations (13) and (14) 

l 

. . 
U * I  

Therefore, we have a direct  correspondence 

That is, i f  the wave number a t  position 
. e  

I 

0 .  - r is 2 and the volume element b?r, contains waves with wave numbers in an 

element % of wave 'number space, then the contribution of that  element t o  

# 

energy is 

or  i n  wave ntmber space, 

I .  
I .  

t ) , A f ;  ,. 

" I 
I 

. '  . .  

. .  

,If we follow the wave number 

&ewill  vary due t o  the small differences in the group velocity for  the 

and retain a constant fik the  volume element . 
I 

' I  
I 



. . .  

4 .  

, . ,  

10 .. . .  . .  
different wave numbers in the element. U s i n g  this fact, we can calculate. . . 

41%. Inserting the expression for %J& calculated in this way into " .. 

equation (17), Whitham (1961) obtained , .  . .  

* .  

The ab- is a direct- and simple derivation of the' intensity of disturbances ' * 

(compared with 'the method of stationary phase approximation (Lighthill, 196&)?, 
F- * , .  

although the derived information is resiricted. (Equatiop(18) shows only 

the magnitude of velocity, and components or the phase of the velocity are 

not obtained . ) 
L 

I 
1 

b) Application to an Isothermal Atmosphere. 

To apply ,Whitham's method to an atmosphere we must calculate 

. det a20/ak ak explicitly as a function of 0. Considering that in an. 
i - 3  . 

/ 

/ 

isothermal atmosphere the dispersion relation, G(k, w) - 0 ,  is given by 

equation (2) and also using equations (5) to (7), after rather lengthy ' 

calculations we have the following relation 

I .  

I I 

With the use of eq-tion (19), the amplitude of P: u(3 t) given 

by equation (18) can be written as t 

' I  For an isotropic impulse F W  is constant and given by equation (12). 

Consequently, the kinetic energy density (5 t), associated with a a 

wave mode is 



1 .  . * 

c 

8 (w > O ) '  
1 2 w3 z- W l )  4 l A I 2  2 (2 

(0 -o2COS2€3)2 02al3/8Uz / 
- 

3 2 3  
I - 

/ 

(2%) c t 

(21) ' 
. (cf. equation (36) in the Appendix) where w is the  frequency of the waves 

at  the position x and the  time t and is given, by equation (8) 

in Section 111. . .  

. I  . . discussed 

t 

H e r e  it should be remembered tha t  there are three caees where equathn (8) 

' has zero, one and two real positive solutions of 0 for  a given 5 and t (see * 

. Fi&es' 1. and 2); 

' cases; i) where ,  the  front of acoustic waves has not reached the observation 

These three cases respectively correspond t o  the three . 

point (5, t) yet; ii) 'where the front of acoustic' waves has passed the 

'observation point, but the front of gravity waves has not reached there yet;' 

and iii) where  both fronts have passed. 

wave mode. 

is giyen by summing equation (21) for  the acoustic wave and equation (21) 

for., the gravity wave (cf . equation bd in the Appendix) . 

, 

.' 1 

. 
I Equation (21) is val id  fo r  each 

Thus, in case i i i ) , t h e  t o t a l  kinet ic  energy density, a t 5  and t ' 

Finally, it should be mentioned that the attenuation of intensi ty  l ike ' * ' *  
. I  

I 

t-3 or  ro3 (ran ih the  n-dlmensiona'l space) along any radius vector is 

character is t ic  of impulses propagated three dimensionally outward i n  a 

, 

dispersive medium. An impulse contains a range of frequencies, so 

3 
q disturbances propagate as a volume and the i r  volume increases as r . . .  

.. . 



. .  

- where ' - 
3 2 2  

0 -y) 
F(@,%Y) - 3 2 2 8 (23) 

w 1 (w -02cos2e)2 02au2/aW2 

and Ci denotes the isothermal sound velocity. The coefficient of F in 

I equation (22) is independent of both the ratio of specific heats, y ,  and 
I 

position in tHe ppace. The space and 7 dependencies of 5 (2, t) are 
1 , 

represented by the non-dimensional quantity, F(W,0;y), delined by / 

equation (23). 

gravity waves, separately. 

We will calculate F(0,8;7) due to acoustic-waves and 
I 
I 

3 

, a) Behind the Front of Acoustic Waves ' '\ 

As discussed in Section 111, the distribution of w in the 2-space 

.. . is a function of r/rc, 9 and y .  

The calculated distribution of F(w, 8; 7) in the p p a c e  is shown in 

Figures 3(a), 3(b) and 3(c) for cases of y = 1, 4/3 and 513, respectively. 

Here we mention that we do not calculate the intensity of disturbances 

near the front because near the front disturbances do not break down into 

So, F is also a function of r/rc, 0 and ye 

' 

i 
I 

wave trains yet and the approximation used t o  obtain equation (21) is not. 

applicable. That is, a point in the &-space does not correspond to a a 

point in the 2-space exactly and energy within a given volume in the &-space 

' is not conserved. 

I Figure 3(a) shows that intensity of disturbances in the wake decreases 

monotonically and spherically after the passage of the front in a con- 

vectively neutral atmosphere 0 = 1). 

impulse acts in an absphere having no particular direction (convective 

neutrality) . . However, figures 3(b) and 3(c) show that after the passage 

of theqfront radiation density is very intense above and below the source 

%. . 
._ --c This is natural becausran isotropic 



. .  . 1 3 .  
if ,the degree of . s tab i l i ty  of the  atmosphere increases (Le. i f  the 

value of y increases). This resul t  is suggested by the folluwing two 
. .  

' I .  
* 

t I f-# . f a h t s ,  F i r s t ,  an impulse contains a l l  frequency components. Second, 

the resu i t s  of paper I show that the atmosphere can respond strongly t o  

a time-harmonic disturbance whose frequency is near the upper characterist ic 

frequency, w 

i f  the atmosphere is sufficiently stable t o  convection (see Figure l(a) and 

in a sharply restr ic ted region above and below the source, 1' - 
/ 

. Figure 3 in paper I), , 
1 - This st r iking resu l t  shown i n  Figure 3(b) and 3(c) (radiation density 

i s  very intense sharply above the source) may be of interest ,  here, because . 
I 

t h i s  may suggest a reason of formation of spicule structures in the  solar 

upper chromosphere. That is, ver t ica l  focussing is a.possible resu l t  of 
. . .  * '. , s t r a t i f i ca t ion  alone. 

' a b) Behind the Front of &avity'Waves 

The distribution of F(w, 8; y )  behind the front of gravity waves are 

, ' calculated for  the case of y * 5/3, and added i n  Figure 2. On the #front.. * 
_. 

: 2  2 
I aU /aw is zero because the front is defined as the envelope of disturbances 

, '  I 
. .  of a l l  frequency components. So, i f  equation (23) is applied l i t e r a l ly ,  . * I  

. ' intensi ty  becomes in f in i t e  on the front. Equation (23) is, however, invalid 0 

near the front for  the 8- reason mentioned i n  the previous sub-section 

for  the case of the front of acoustic waves. 

Here we should mention that  intensity shown i n  Figure 2 comes mainly ' . 

2 2  from waves radiated near the c r i t i c a l  direction ec (cos 2 ec = W /W2). 

' As mentioned before (Section I1 or paper I), the wave number of waves 

, - radiating'energy in the c r i t i c a l  direction is inf ini te .  Thus, a careful 

discussion whether intensi t ies  of gravity waves shown i n  Figure 2 can be 



* .  
I 

c 14. . 

radiated t o  a great distance frcnn the  source in actual physical si tuations . 
4 1 %  . .  

', . I  - may be necessary. 
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- APPENDIX: 'RESPONSB To A 

' a) The Asymptotic 

POINT IMPULSE ACTING IN A PARTICULAR DIRECTION 

Solution of the Inhomogeneous Wave Equation 

As done i n  t h i s  paper, the response of the atmosphere t o  an impulse 
I 

can be studied as an i n i t i a l  value problem. 

can be also studied by solving the inhomogeneous wave equation. 

However, the same problem 

The 

. la ter  method w i l l  be simpler i n  the case where the impulse is a directed ' 

' point source. 

' 

. Let us assume an external force, f (5, t), i n  an unbounded 

Then, the 
I 

and isothermal atmosphere s t ra t i f ied  under a cbnstant gravity. 

inhomogeneous wave equation represented by the pressure variation, pl, 

' is (see equations (5) and (6) i n  1) 

,' where ' .. 

. .  

I 
* W e  solve equation (24) under the condition that dependent variable, 

pl/p2,.  is everyyhere zero un t i l  an i n i t i a l  instant,  t = 0 ,  and at  the t i m e  

t = o the force, s, acts instantly. 

W e  w i l l  introduce a four dimensional space (5, ct), and a four 

dimensional wave vector space (lclc d c ) .  

stationary phase as t - 0 0  and r' +- (wheqe r'. is the distance between the 

Then, using the approximation of 

obsenration point, 2, and the source region 3 ; hereafter we take the 

. origin i n  the source region and do not distinguish r' and r because r' -OD) ,  

the ' asylirptotic solution of equation (24) is (Lighthill, 1960) 



,. . 

I . \ 

- PI/p, f 
4 

. .  
.. . 
l9 * 

Y 

i 
where eis the four dimensional distance, (r2 + c2 t2)li2, and where the ': . 1' 

I .  

* suqp E i s  over all  points (020) on the hyper-surface, G& w/c) - 0 (sea 
- \ 

equation (2)), whose n-1 is anti-parallel t o  the four dimensior+l obser ' 

vation point (r, ct); tha t  is, over a l l  points where 
I 

* .  I 

.r 

. 
' . (cf. equatione (1) and (8)). Xoreover, in equation (26), "(k, w/c) i s  a *t ' ,. 

, 

. 
Cb  it^ a phase factor of rpodulue 1; U G  is the gradient of G in Cartesian 

four space; and K , i . s  the Gaussian curvature of the hypersurface - each 

element of the matrix of products of f i r s t  derivatives of G being 

m l t i p l i e d  into the corresponding co-factor of the matrix of (second 

' .  . ' 

' 
. 

. . 
Y. - ._ _. --- . derivatives, 'and divided by G 5 . 

. .  
b) Response i n  Kinetic Energy 

. I  

k a mamare of the response wd adopt kinetic energy dentisy, E&, t). 

- Kinetic energy density I s  related t o  pressure fluctuation by an equation 

. (em equation (13) in paper I). Inserting equation (26) i n to  the relation, * ". 
I after a lengthy aalculation w e  have 

, 
4 

. .  
. .  , 

0 

I 

. I  

/' 

i . ' 

x' . 



* '  

. 
. .  . 

' : 3 .  . .  1 * ! .  

i' M2 . .. 

1 @IJ2/aU2 
' .  . . .  

. ' . ' I  ' ,  

I . .  

17 

' I  . . . .  

.. I * pointe' where o >#o of the points satisfying equatich (28) I 

' . In de r ivhg  equation (29) we used 

e .  

1 .  

.. .IOG12 = 4 C2 w4 2 2  2 1+-  * (30) I 

(a 4 d  cos e) 
. r l  

2 
* .  

a .  

-. " I 
* I  . , . .  . I which &e obtained from the definit ion of G K a& the  re lat ion be- 

, I I '  

I 3  . a  I 

. I  
. tween (k, ( I '  W/C) and (E,  ct) shown in equation (27). 

, .  

c) Response t o  Three Kinds of Impulses ' I  

2 
*I Ti calculke i n  equation (29) explicit ly,  we nust specify the * 

q ' .  ?tarnal force,:. We study about the following three kinds of sources, 
' ' a  

'+  separately; 

the 

that is, point impulses acting t o  x, y and z directions at 

. .  
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, In,-&e (a), for.exsmple, ineerting equation (32) in to  equation (25) and 

performing integrations w i t h  respect t o 2  and t t o  obtain @ defined by 

equation (28). then we have @ expressed by 2 and W. We eliminate 2 from . 

t h i s  eqkession for  

$ 
a 

. 

I 

. *  
* 

with the help of equation (27) and square the 

expression. Then, we have , . .  
/ 
/ 

2 2  2 2  
I 4 -1 2 

(2x)8 (0 2 2  -W~COS 2 e) /' 

b1l2 = - 4 4 (W 'w,)(o -5) 2 
sin 8 cos e, case (a) /' " 

. ,(33) , . 
. I  /' . 

. .  .where the' suffix 1 of @ denotes case (a), and where poo denotes the 
. .  
I .  . e .undisturbed density a t  the position of the impulse. 

cases (b) and (c), W e  have 

Quite similarly, for 
I I .  

I 

2 2  

2 2 sin 8 sin 0 ,  case (b) . 
. I :. 2 2 * 2  

(W - 0 ~ ~ 0 s  e 

I 

I 

. .  
. .  

. I. *. . 
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I '  

* .  
(35) 

., . .  
I f  equations (33), (34) or  (35) are inserted into equation (29), we have 

expressfons fo r  distribution of kinetic energy in t h e p p a c e  result ing 

f r h  impulses directed in the  x, y, or z directions, respectively. .. * 
. f  

d) A Relation to ' the Responce t o  an Isotropic Impulse 

' , To show: a re lat ion between the response of the atmosphere t o  an 

. -  I 3 XER" 

isotropic impulse and t o  the directed impulses, we assume three atmospheres ' 

o f .  the same kind, and assume that  in each atmosphere an impulse acts in 

the  x, y and z-direction with a same amplitude (Ao 

. I  

' - 7  . &  
I .  

= A2 - 4) at the 

r .  

. .  
, 

a .  

. -  G a ,  rc 
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' same p o b t  and time, respectively. We sum the kinet ic  energy density at 

the corresponding points in these three systems at  the same t ime .  That is, 

we sum equations (33) t o  (35) and insert  the sum into equation (29) t o  

obtain 

As anticipated, the intensi ty  distribution of the kinet ic  energy density 

i n  the 2-space shown in equation (36) is  quite same with that  fo r  an 

isotropic point impulse shown in equation (21). 
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Figure Captions 
I .  

* 

9 I Fig. 1. Frequency distribution in wave motions in the wake of acoustic 

waves. 

Three cases (r - I, 413 and 5/3) are drawn on the s G m a p .  

rc denotes the position of the front of disturbances. 
I w.. -- *A- 

Fig. 2. Frequency distribution in wave motions in the wake of gravity . 
~ 

* waves. The envelopes denote the front of disturbances. The 

left hand side is for y = 413; the right hand side is for 

_-' y 5/3. In;e broken lines denote intensity of disturbances 

' Q radiated by an isotropic point impulse, and the numerical values 

represent values of P(w, 0; 7). The circular arcs at both sides 

of the figure denote the position of the front of acoustic waves. 
I 

' *  

Fig. 3. Distribution of kinetic energy density in the wake of acoustic ' ' 

I 
c / 

I waves radiated by an isotropic point impulse. The numerical/ I 

values added to iso-intensity curves represent values of 

P(w, 8; y) defined by equation (23). rc denotes the position . I 
I 

. I  
e i  

, .  I , of the front of disturbances. Figures 3(a), 3(b) and 3(c) , 9 ,  

I 

~ correspond, to the cases y = 1, 413 and 5/3, respectively. I 
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